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Maximum likelihood estimate
of default correlations

Estimating asset correlations is difficult in practice since there is little available data and
many parameters have to be found. Paul Demey, Jean-Frédéric Jouanin, Céline Roget and
Thierry Roncalli present a tractable version of the multi-factor Merton model in which firms
are sorted into homogeneous risk classes. They derive a simplified maximum likelihood
approach that provides estimates in a reasonable computational time. As an application of
this methodology, industrial sector correlations are estimated from S&P’s data

issue in the management of loan portfolios. Value-at-risk and other

risk indicators are sensitive to the quality of the calibration of the
credit model and, in particular, to the accuracy of the estimation of de-
fault correlations. Yet there is a major problem: data is scarce. While com-
puted estimators are known to behave well asymptotically, with small
samples biases and standard errors are likely to increase dramatically. This
leads to imprecision in the resulting estimators. Gordy & Heitfield (2002)
suggest imposing parametric restrictions on the underlying model in order
to reduce the impact of this imprecision. They compare the behaviour of
the constrained estimates with Monte Carlo simulations. Here, this ap-
proach is extended to a tractable multi-factor setup in the case of homo-
geneous risk classes, and we compare the usual maximum likelihood
estimator (MLE) — which we call the ‘binomial’ MLE — and a simplified es-
timator called the ‘asymptotic’ MLE, which is more tractable and behaves
well with small samples.

The following section provides a reminder of some well-known fea-
tures of Merton’s model of default occurrences, which is also that used in
the CreditMetrics model (Finger, 1999), and details some homogeneity as-
sumptions between risk classes. We then show how the MLEs are derived
and to what extent adding other constraints to the model — roughly as-
suming inter-risk class correlations are constant — enables us to reduce to
a two-factor model for each risk class, which is clearly more tractable. We
then provide a crude evaluation of the bias in the estimation using Monte
Carlo simulations and compare one-factor and multi-factor models. Final-
ly, we present two estimations of default sectorial correlations extracted
from the S&P public database for 1981-2002.

The estimation of default correlations between obligors is a challenging

Risk classes and homogeneity assumptions

Throughout this article, we assume we have succeeded in sorting all firms
into a short collection of risk classes with some homogeneity properties
defined below. Risk classes can be built with rating grades, geographical
areas, industrial sectors or a combination of these criteria. We denote the
number of risk classes as C, the number of firms belonging to the risk class
¢ as N (t) (the current total number of firms alive is N(#) := Z_N (#)) and
the number of default occurrences within the class ¢ in year t as D (¢). The
variable of interest for our study is the ‘default rate’ in the risk class ¢ called
W (1) and defined as:

D, (1)
Me(r)=- 0

c

The variance of this default rate for a given risk class depends heavily on
the correlation between defaults of the firms belonging to this class. The
intuition behind this statement is naive: the higher the correlation is, the
more likely the other firms are to default given a default event at time .
This conveys the idea that we may extract information on the correlations

1)
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within (and between) risk classes from the observation of these default
rates. Moreover, while the variance of default rates is an indicator of the
correlation, the mean default rate calculated over time provides informa-
tion on the default probabilities among each class of risk. To illustrate this,
we show in figure 1 the distribution of the annual default rate in the Mer-
ton/Vasicek model with respect to the asset correlation p. The risk class
contains 1,000 names with a common default probability equal to 20%. We
check that the variance of default rates depends on the asset correlation,
whereas the mean of default rates is equal to the default probability. To
go a little further in the study of default correlations, we need to apply a
model for describing default occurrences.

[] Merton’s general framework. For our study, we use the original Mer-
ton model of default events, with several factors that will be specified later.
We thus consider a set of N obligors, labelled by n. The risk of each oblig-
or is modelled through a latent variable Z, that stands for the normalised
return on the obligor’s asset. As usual in Merton’s model, the latent vari-
ables are described by a Gaussian vector with standardised Gaussian mar-
gins. Obligor n defaults as soon as Z, falls below a threshold B,, which
can be mapped as the default probability (for a given maturity) of the firm
n. If we call 7, the default time of the obligor n, we have:

e, <1}={z,<8,)

Having such a huge number of firms to cope with in practice (up to
100 or 1,000), it is usual in Merton’s framework to assume we have iden-
tified a few risk factors (labelled by f=1, ..., F) and rewrite the latent vari-
ables (in the Gaussian assumption) as noisy linear functions of these factors':

F F
2
Z,= 2 Ap Xy + /1— D A7 e,
=1 f=

We will choose the factors in a manner consistent with the risk classes that
are used to group the obligors.

[] Homogeneity of risk classes. We assume the risk classes are homo-
geneous enough to make the following assumptions:

B All firms within a given risk class have the same rating, that is:

B,=B,, Vnec ©2)

W Within a given class of risk, the correlation between two firms is con-
stant, that is:
Pmn=Per  Vm,nec Q)

B Given any pair of risk classes (¢, d) there is a unique correlation be-
tween any pair of firms (m, n) belonging to each class, that is:

pm,n:pc,d’ VmEC,ned (4)

T Without loss of generality, the factors are taken as being independent



The first assumption suffers from a lack of evidence, since except in
the case where risk classes gather obligors sharing the same rating, it is an
unrealistic hypothesis in practice. However, we believe it is a practical com-
promise for the unique purpose of calibrating the correlations (we would
not make such an assumption for assessing the capital risk of the bank).

We can rewrite the model with our assumptions. Let us consider X as
the following C x C matrix*:

P P12 e Prc
s = P?,l l'3'2 . : (5)
: . Pc-1c
Pci  ° Pcc-i Pc

If we assume that X is positive and definite, each variable Z, can be written
as a linear function of a set of F factors Xf, and an idiosyncratic term €

F
Z, = ZAf’CXf+Jl—pcsn, nec (6)
=

where obligor n belongs to the risk class ¢ and where the F x C matrix A
is a ‘square root’ of X, that is, ATA = =. Any square root corresponds to a
different form of the same factor model, based on the same matrix of cross-
class correlations. The factors X, and the idiosyncratic term €, are inde-
pendent and follow a standard Gaussian distribution. The number of factors
F has to be greater or equal to C to ensure the existence of A.

Constrained/unconstrained MLEs

As in Gordy & Heitfield (2002), a maximum likelihood procedure will be
carried out for estimating the default correlations. Here we derive the MLE
in the general framework described above (called the ‘unconstrained’
model) but, in a multi-factor setup, the formula is not tractable at all.
Therefore we suggest adding a new constraint on the inter-risk class cor-
relations, so that we are able to reduce the number of factors for each
risk class down to two and get a new MLE that is much easier for the nu-
merical optimisation. Finally, we replace the last MLE (called the ‘bino-
mial” MLE) with an ‘asymptotic’ MLE, which is less consuming in terms of
computational time.

[ The unconstrained model. Using the assumptions of the last section, we
can easily write the probability of default conditional on the factors X as:

F
B, —zleAf’fo

(7)
\]l_pc

where @ (respectively ¢) represents the standard Gaussian cumulative dis-
tribution (respectively density) function. Conditional on the factors, the
random variable’ D representing the default number in the risk class ¢ has
a binomial distribution with parameters NC — the number of firms in the
risk class ¢ at time # — and P (x). Let us note:

Bin, (x) = [g CJg(x)Df (1- P ()" ®)

c

Px)=o

From this we can easily deduce the conditional likelihood of our obser-
vations. Summing over the distribution of each factor, we obtain the fol-
lowing expression for the unconditional log-likelihood:

c
() =tog <[ TTmin (dao(s ©
RY =1
In this expression, @ is the standard multivariate Gaussian cumulative den-
sity function with the correlation matrix equal to the identity matrix. This
log-likelihood has already been obtained by Gordy & Heitfield (2002).
This model is called ‘unconstrained’ because no other condition is im-
posed on the matrix X. The major difficulty we encounter is the large num-
ber of parameters to be estimated (C (C + 1)/2). Due to the scarcity of data
when dealing with default times series, estimating too many parameters is
hazardous. To obtain more robust estimators, the number of parameters

1. Distribution of annual default rates
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has to be reduced.” This expression becomes very intricate when the num-
ber of risk classes C increases, due to the multi-dimensional integration. A
numerical solution cannot be obtained in a reasonable amount of time as
soon as the number of factors becomes greater than three. For this reason,
a different formulation of our initial model is explored, from which a sim-
plified expression of the likelihood will be derived.

[] The constrained model. Let us now introduce an extra assumption on
the matrix X. We assume that the correlation between two latent variables
is unique among all risk classes, that is:

Peq =P Ve#d (10)

The matrix X can therefore be rewritten as:

PP P

| P P2 11)
oo 0
P - P Pc

We suppose p <min_p, so that X is positive. This is an assumption on the
upper bound of the inter-risk class correlation that may not be confirmed
in practice.> However, this assumption will prove its tractability and enable
us to reduce’ the number of estimated parameters to C + 1. Even if the
constrained model is less general than the previous one, it is preferred for
management purposes. Indeed, credit portfolio management and Raroc
systems use generally parsimonious models to control their robustness.”
For the remaining, we will only consider this ‘constrained’ model.

Now with the new assumption, we can rewrite our model much more

easily as:
an\/ax-i_\/pc_pxc-’_\ll_pcsn’ nec (12)

This equation is obviously sufficient for equation (11), and this form (that is,

2% is obviously not a correlation matrix, but ils entries are the assel correlations of a
sample of C obligors belonging to the different risk classes

3 We drop the reference to the datet in the remainder

1 As pointed by Gordy & Heitfeld (2002), the parameters are not well identified in the
unconstrained model. They suggest that “identification problems can be overcome by
imposing parametric restrictions”

5 Nevertheless, we believe it is true when dealing with geographical areas or industrial
sectors

S For example, with 15 risk classes, the number of parameters reduces from 120 in the
unconstrained model to 16 in the constrained model

7 With too many parameters, it may be difficult to understand the sensitivity of resulls to
the parameters
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A. Statistics of the asset correlation

estimates (PD = 200bp, p = 25%)

Asymptotic Binomial
Statistics (in %) MLE1 MLE2 MLE1 MLE2
Mean 23.7 225 25.2 23.6
Std. dev. 5.8 72 7.6 8.5
Median 23.1 21.7 24.7 23.0

B. Statistics of the asset correlation

estimates (PD = 20bp, p = 25%)

Asymptotic Binomial
Statistics (in %) MLE1 MLE2 MLE1 MLE2
Mean 16.6 16.2 26.2 234
Std. dev. 8.9 9.8 11.6 12.2
Median 15.0 14.2 25.9 23.1

F=C+1) is appealing because there is a natural economic interpretation for
each term: Z, can be explained by a common factor X, which affects each
obligor in the same way, and by a specific factor X depending on the risk
class ¢ of the firm n. The part of Z that cannot be explained by sectorial or
global factors is captured by the idiosyncratic term €. In some sense, the con-
strained model may be interpreted as a two-factor model.

Under the Gaussian assumption for the idiosyncratic term €, we can
write the conditional default probability as:

Pc(x’xc)=‘1’[Bc_ﬁjl__pp”_px”] (13)

Now we provide the derivation of two different MLEs to be used for
the estimation.
H Binomial MLE. The log-likelihood function is calculated in the same
way as in the previous section. The conditional likelihood is first calculat-
ed and successively summed over the distribution of each sectorial factor
and over the distribution of the common factor. The unconditional log-
likelihood is*:

¢,(8)=log [, dCI)(x)ljl_[RBinc (x,x,)d®(x,) (14)

In this expression, the high-dimensional integral is replaced by a product
of one-dimensional integrals, which are more tractable to compute. We
can show that the expressions of likelihood (9) and (14) are mathemati-
cally equivalent assuming that p <min_p_.

B Asymptotic MLE. Let us note as W= D(,/NC the default rate at time ¢ in
class ¢. When N, — oo, and conditional on the factors X = x and X.=x,
we have (according to the law of large numbers) W, — P(x, x,). Under this
asymptotic assumption, we approximate the conditional default rate p_ by
its limit P(x, x,). This assumption leads to the following expression of the
log-likelihood function’:

¢,(6)=log j;dy@(f(y))ﬁ ¢((1)—} ) (15)

with:

-8B

In a finite sample, D, may be equal to zero, which is not possible asymp-
totically. This problem arises because the number of observations N, may
not be enough in practice. One way to reconcile data with our model is
to consider that the real value of W, is not zero, but is inferior to a thresh-
old u¢ . =1/N,_. Let us consider U, the set of risk classes for which the de-

fault rate at time ¢ is strictly positive: U= {c € {1,..., C} I >0} We obtain

(16)
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2. Asymptotic estimator MLE1 of asset

correlation (PD = 200bp, p = 25%)

9+

| — N=50
c 87 L === N=200
2 7 ,7{?\\ ~ = N=500
’ | \ — —
56 AR N = 20,000
> & L
= N
T 4 g NN
E‘ ' II | S \
.'g 37 3 ;I R \\\
. | A%
9 21 iy [ PAN
— K | ~\
/I// |
=F | S
0 T T T T T T T T T T T T T T T T
0 5 10 15 20 25 30 35 40 45
p (%)

the following generalised formula for the log-likelihood:

¢,(6)=log 1H¢(f(y)>ﬁ -

0cct, Yoo —p o(@7" (,))
TI[1-o(r () Jar

In this section, two expressions of log-likelihood functions have been
developed. The first one — binomial likelihood — is the function obtained
by Gordy & Heitfield (2002). However, by imposing the restriction de-
scribed above on the cross-risk class correlation matrix, we were able to
convert the multi-dimensional integral into a product of one-dimensional
integrals. The binomial likelihood obtained is more convenient, especial-
ly in a multi-factor setup. The second form of likelihood function — as-
ymptotic likelihood — assumes that the number of firms in each class is
large enough to allow us to approximate the random variable represent-
ing default rate by its limit. By maximising each likelihood — using nu-
merical methods — we deduce the corresponding maximum likelihood
estimators, respectively called ‘binomial’ and ‘asymptotic’ estimators.

Estimating the bias with Monte Carlo simulations

All the calculated MLEs are asymptotically unbiased. However, in small
sample conditions, biases usually appear. The aim of this section is to give
a rough evaluation of these biases using Monte Carlo simulations of the
data." We will stress the differences between the one-factor and two-fac-
tor (or the constrained multi-factor) frameworks.

8 To derive this equation, one can compute the conditional (given X = x) likelibood, which
is equal to:

P(D, =d.¥, |X = x)=T][,Bin, (x.x.)d®(x,)
¢
and sum over the distribution of X

9 One way to derive this likelibood is to calculate the probability of the default rate
conditionally to the factor X:

G.(m)=P(u. <m|X =x)
:1—<1>{B”_ ]"Pvd’fl('"c)‘\ﬁmfl()f)}

P =P

and the cumulative joint distribution function of default rates:

The likelibood is then obtained by differentiation of G



3. Binomial estimator MLE1 of asset

correlation (PD = 200bp, p = 25%)

C. Statistics of the MLE2 estimates (mixture
of PD, p = 25%)
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To obtain our Monte Carlo estimates, a synthetic default database that
is supposed to represent historical data is first generated. For the sake of
simplicity, we will consider here a single probability of default (PD) for all
the firms in our sample — recall we want a crude estimation of the bias.
We consider a sample of maturity T = 20 years, which is about the same
as in public databases. For each time ¢, the total number of firms N, is sup-
posed to be constant and equal to N.

Two kinds of estimators are studied: first, considering that the value of

threshold B = ®~'(PD) is known, the only parameter to estimate is the asset
correlation p. This full information estimator is called MLE1. Another pos-
sibility is to assume that the value of threshold B is unknown, and thus to
estimate it jointly with p. The resulting limited information estimator is
called MLE2. These estimators are calculated using both the binomial model
and the asymptotic one.
[ The bias within the one-factor model. Here, the single-factor model
is used, which is less demanding in terms of running time. The study is
then extended to a two-factor model, to try to check the validity of our
analysis closer to real-world conditions.

We assume that the asset correlation p is equal to 25%. Tables A and
B present some elementary statistics on the distribution of MLE1 and
MLE2, extracted from a synthetic sample of N =200 firms. Gordy & Heit-
field (2002) point out that the ‘binomial’ MLE2 — with limited information
— presents a downward bias, and that the phenomenon is even more
acute when the default probability decreases. The same conclusions are
reached here. The ‘binomial’ MLE1 behaves approximately in the same
way. Figures 2 and 3 show the distribution of MLE1 estimators, extract-
ed from the binomial and asymptotic log-likelihood, when N varies. The
‘asymptotic’ estimator presents an important downward bias when the
number of firms N is small, but it is decreasing with N. The behaviour of
the ‘binomial” estimator is better even in small sample conditions. How-
ever, we notice that the variance of the distribution is very important for
both estimators. In our example, we observe that the dispersion decreases
when the number of firms increases. We obtain similar results when the
number of years T increases (see Gordy & Heitfeld, 2002, for the bino-
mial estimator). However, it is important to notice that the ‘asymptotic’
estimator converges to the true value when both N and T tend to infin-
ity, whereas the ‘binomial’” estimator converges to the true value only
when T grows to infinity.

The previous simulations were based on the assumption that all the firms
have the same default probability. Another case is now tested, where the
firms in the synthetic sample belong to different rating groups, and thus have
different default probabilities. For each date ¢, a sample of 200 assets values
is simulated, corresponding to 100 firms with annual default probability of
20 basis points and 100 firms with annual default probability of 100bp. We

Asymptotic Binomial
Statistics p (in %) B p (in %) B
Mean 16.9 -2.47 22.3 2258
Std. dev. 8.1 0.12 10.0 0.17
Median 155 -2.48 21.3 2258

D. Statistics of the MLE1 asset correlation

estimates (two-factor model)

Asymptotic Binomial
Statistics (in %)  p, o p Py ol p
Mean 19.9 12.9 6.5 19.9 10.7 [25)
Std. dev. 4.8 &aL SaL 6.4 4.3 SN
Median 19.5 12.6 6.3 19.4 10.3 7.2

want to test the robustness of our estimates when the rating groups firms
belong to are unknown. The MLEs are thus calculated considering that all
the firms have the same rating, hence the same probability of default and
the same threshold B, which is unknown. The results are shown in table C.
Compared with the binomial estimator, the ‘asymptotic’ estimator presents
a larger downward bias but the variance in its distribution is lower.
[] The bias within the two-factor model. In practice, the number F
of factors depends on the public database used and the number of risk
classes, but it is typically around 15 when sectors are considered. There-
fore, we need to check the behaviour of our estimates when the num-
ber of factors increases. Since the running time would be almost infinite
for a two-factor model with 15 risk classes, we limit ourselves to check-
ing the behaviour of the estimates extracted from a two-factor model with
two risk classes. Again, what we are interested in are rough ideas of the
biases in the estimations.

We simulate assets values from the following risk class correlations

matrix:

zz(p] p]z(zo% 7%) an

PPy 7% 10%

The size of our sample is still assumed to be T =20 years. The number of
firms is N =200 for the two risk classes and all time ¢. We set PD = 200bp
for all firms. We assume that PDs are known and calculate maximum like-
lihood estimates for parameters p, p, and p, only. Table D presents some
statistics of the estimators.

The bias of the estimator seems to often be lower than the one obtained
in the one-factor model. This is not immediately intuitive since the bias is
a complicated function of all parameters (PDs, true correlations, etc). How-
ever, as suggested by one referee, this may be explained by observing that,
in the two-factor case, we have more information for estimating each inter-
class correlation due to the presence of the (correlated) other class.

Estimation using S&P data

Rating agencies such as Moody’s and Standard & Poor’s annually provide
databases of default rates sorted by category of obligors. Firms are grouped
either by rating, sector of activity or geographical location. Analysing these
historical series of data enables us to estimate the parameters of depen-
dence of default events across each class of risk. In our study, we used
S&P data giving default times series of firms grouped by sector of activity.
Hence the expression ‘class of risk’ in our article always refers to this sec-
torial distribution (with no distinction between high-yield and investment-
grade companies). To our knowledge, this is the first study to provide

10 We use 5,000 trials for all Monte Carlo experiments in this section
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E. Asymptotic and binomial MLE2 estimates of the asset correlations extracted from the S&P database

Two-factor Single-factor

N.- I, Asymptotic Binomial Asymptotic Binomial
Aerospace/automobile 301 2.08% 13.3% 13.9% 13.7% 11.6%
Consumer/service sector 8355 2.37% 12.2% 10.6% 12.2% 8.9%
Energy/natural ressources 177 2.10% 23.2% 25.5% 16.2% 14.5%
Financial institutions 424 0.57% 17.0% 16.4% 12.0% 9.5%
Forest/building products 282 1.90% 18.1% 18.8% 28.6% 31.5%
Health 135 1.27% 12.9% 10.6% 13.1% 13.2%
High technology 131 1.66% 15.0% 16.4% 12.9% 10.6%
Insurance 166 0.61% 26.3% 34.3% 13.6% 17.8%
Leisure time/media 232 3.01% 13.8% 9.4% 17.2% 12.0%
Real estate i(i28 1.01% 43.2% 52.4% 48.7% 53.0%
Telecoms 100 1.91% 22.9% 29.1% 27.0% 34.0%
Transportation 146 2.02% 17.7% 11.1% 12.8% 10.4%
Utilities 206 0.43% 14.4% 18.7% 10.4% 17.5%
Inter-sector 7.2% 9.4%

maximum likelihood estimates of default correlations within and across
obligors grouped by industrial sector."

The S&P database of defaults spans 22 years between 1981 and 2002.
For each year, the database reports the number of firms by sector of ac-
tivity and by rating grade, and the observed number of defaults. Firms are
divided into S = 13 sectors of activity. In this study, we do not take into
account the rating grade of each obligor, but we assume that sectors are
homogeneous enough to have a unique asset correlation for all firms in
the same sector.”? The risk classes correspond then to these 13 sectors of
activity. We report asset correlation estimates in table E (we use the MLE2
estimator, because we assume the thresholds are unknown).

We observe that the ‘binomial’ and ‘asymptotic’ estimators are relatively
close in value. Yet a noticeable difference appears for some sectors, such as
insurance, real estate, telecom or transportation. It seems that the greater dif-
ferences occur when the number of firms in a particular sector is low (in
table E, N . represents the average number of firms by sector whereas ﬁc rep-
resents the average default rates by sector). This remark suggests that these
differences may be caused by a convergence problem due to scarcity of data.
If we compare these results with estimates based on the single-factor model,
we observe that asset correlation estimates based on the two-factor model
are slightly greater on average than the ones based on the single-factor model.
B Remark 1. If we pool all the sector activities to define only one risk class,
the ‘binomial’ and ‘asymptotic’ estimates of correlation are respectively 8.3%
and 10.1%. By using rating grades as risk classes, estimates of correlation
are of the same order (which confirms the results of Gordy & Heitfeld,
2002). Compared with results with sector activities as risk classes, default
correlations are smaller. We think we may underestimate default correla-
tions when we define risk classes as rating grades, because rating grades
are not homogeneous enough to have a unique default correlation.

Conclusion
This article extends the framework of Gordy & Heitfield (2002), which cal-
culates the MLE of asset correlations. Using a simplified version of the Mer-
ton factor model for modelling default events and under realistic
assumptions, our assumptions enable us to estimate default correlations
using the maximum likelihood approach with reasonable computational
times. Two kinds of estimators are formulated. The first, the ‘binomial” es-
timator, is based on the joint distribution of the number of defaults of dif-
ferent risk classes. The second one, the ‘asymptotic’ estimator, is based on
the joint limit distribution of the default rates of different risk classes. This
estimator imposes more restrictive assumptions, but it allows a significant
simplification in the log-likelihood calculations.

Monte Carlo simulations are performed to assess the bias of the result-
ing estimators. With small samples, which is the practice with databases
of default rates, the estimators may produce some bias. Unfortunately, we
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cannot ignore the fact that default data is very sparse and thus the distri-
bution of the estimators may be significantly dispersed. As a preliminary
study, we estimate default correlations extracted from the S&P database.
We obtain relatively closed results for asymptotic and binomial estimates.
Moreover, using a one-factor model may underestimate default correla-
tions. Similar results are obtained when we use rating grades as risk class-
es. We conclude that default correlation estimators are highly dependent
on the definition of risk classes, and they may be underestimated. How-
ever, we should be cautious since Monte Carlo simulations suggest that
default correlation estimation is a very hard task. H
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11 A pioneer study is that of Frye (2000), which estimates default correlation in a one-
Jactor model. Gordy & Heitfield (2002) provides maximum likelibood estimates by rating
classes (see also Diillmann & Scheule, 2003). The closest study is the one performed by
Servigny & Renault (2003). They provide estimates of default correlations within and
across sectors of activity using the relationship between joint default probabilities and
default correlations

12 We assume that the PDs are the same within a sector, which is not the case in practice.
1t is a practical compromise to estimate default correlations
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